Quan sát cây cầu văng minh họa ở Hình 25.
Tại trụ cao nhất, khoảng cách từ đỉnh trụ (vị trí A) tới chân trụ trên mặt cầu (vị trí H) là 150 m, độ dài dây văng dài nhất nối từ đỉnh trụ xuống mặt cầu (vị trí B) là 300m, khoảng cách từ chân dây văng dài nhất tới chân trụ trên mặt cầu là 250 m (Hình 26). Tính độ dốc của cầu qua trụ nói trên (làm tròn kết quả đến hàng phần mười theo đơn vị độ).
Lời giải
Xét tam giác ABC, có:
\[{\rm{cos}}\widehat {AHB} = \frac{{A{H^2} + B{H^2} - A{B^2}}}{{2.AH.BH}} = \frac{{{{150}^2} + {{250}^2} - {{300}^2}}}{{2.150.250}} = - \frac{1}{{15}}\]
⇒ \[\widehat {AHB} \approx 93,8^\circ \]
Ta lại có: \(\widehat {AHB} + \widehat {BHK} = 180^\circ \)
\(\widehat {BHK} = 180^\circ - \widehat {AHB} = 180^\circ - 93,8^\circ = 86,2^\circ \)
Xét tam giác BHK vuông tại K, có:
\(\widehat {HBK} + \widehat {BHK} = 90^\circ \) (hai góc phụ nhau)
⇔ \(\widehat {HBK} = 90^\circ - \widehat {BHK}\)
⇔ \(\widehat {HBK} \approx 90^\circ - 86,2^\circ = 3,8^\circ \).
Vậy độ dốc của cầu qua trụ khoảng 3,8°.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247