Cho tứ giác ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo, E là trung điểm của AD, G là giao điểm của BE và AC. Tính:
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} \);
Lời giải
Xét hình bình hành ABCD, có O là giao điểm của AC và BD nên O là trung điểm của AC và O là trung điểm của BD.
⇒ \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 \) và \(\overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0 \)
Ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} \)
\( = \left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {OB} + \overrightarrow {OD} } \right)\)
\( = \overrightarrow 0 + \overrightarrow 0 \)
\( = \overrightarrow 0 \).
Vậy \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247