Cho góc α thỏa mãn 0° ≤ α ≤ 180°. Chứng minh rằng sin4 α − cos4 α = 2 sin2 α − 1.

Câu hỏi :

Cho góc α thỏa mãn 0° ≤ α ≤ 180°. Chứng minh rằng

sin4 α − cos4 α = 2 sin2 α − 1.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải:

Cách 1. Ta có \({\cos ^4}\alpha = {\left( {{{\cos }^2}\alpha } \right)^2} = {\left( {1 - {{\sin }^2}\alpha } \right)^2} = 1 - 2{\sin ^2}\alpha + {\sin ^4}\alpha \)

Do đó: sin4 α − cos4 α = sin4 α – (1 – 2sin2 α + sin4 α) = 2 sin2 α − 1.

Vậy ta được điều phải chứng minh.

Cách 2. Ta có sin4 α − sin4 α = (sin2 α + cos2 α)( sin2 α − cos2 α)

 = 1. [sin2 α – (1 − sin2 α)] = 2 sin2 α − 1.

Vậy sin4 α − cos4 α = 2 sin2 α − 1.

Cách 3. Ta sử dụng phép biến đổi tương đương

sin4 α − cos4 α = 2 sin2 α − 1

sin4 α − 2 sin2 α + 1 − cos4 α = 0

(1 − sin2 α)2 − cos4 α = 0

cos4 α − cos4 α = 0 (luôn đúng).

Vậy đẳng thức được chứng minh.

Copyright © 2021 HOCTAP247