Cho góc α (0° < α < 180°) thỏa mãn cos alpha = 5/14. Giá trị của biểu thức P = 2 căn bậc hai 4 + 5tan alpha + 3 căn bậc hai 9 - 12cot alpha là: A. 11; B. 12; C. 13; D. 14.

Câu hỏi :

Cho góc α (0° < α < 180°) thỏa mãn \(\cos \alpha = \frac{5}{{13}}\).

Giá trị của biểu thức \(P = 2\sqrt {4 + 5\tan \alpha } + 3\sqrt {9 - 12\cot \alpha } \) là:

A. 11;

B. 12;

C. 13;

D. 14.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải:

Đáp án đúng là: D.

Vì 0° < α < 180° nên sinα > 0

Do đó \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{\left( {\frac{5}{{13}}} \right)}^2}} = \frac{{12}}{{13}}\).

Suy ra \(\tan \alpha = \frac{{12}}{5}\); \(\cot \alpha = \frac{5}{{12}}\)

Do đó \(P = 2\sqrt {4 + 5.\frac{{12}}{5}} + 3\sqrt {9 - 12.\frac{5}{{12}}} = 2.4 + 3.2 = 8 + 6 = 14\).

Copyright © 2021 HOCTAP247