Hướng dẫn giải:
Áp dụng hệ quả của định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Theo định lí sin ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)\( \Rightarrow \sin B = \frac{b}{{2R}};\,\,\sin C = \frac{c}{{2R}}\).
Từ đó ta có: sinC = 2sinBcosA
\( \Leftrightarrow \frac{c}{{2R}} = 2.\frac{b}{{2R}}.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
\( \Leftrightarrow {c^2} = {b^2} + {c^2} - {a^2} \Rightarrow a = b\).
Suy ra tam giác ABC cân tại đỉnh C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247