Cho tam giác ABC biết a = 16, c = 12, góc A = 60^0. Tìm kết quả đúng trong các câu sau? A. b = 6 + 2 căn bậc hai 37; góc B xấp xỉ 40,5^o; góc C xấp xỉ 79,5^o; B. b = 6 + 2 căn bậc...

Câu hỏi :

Cho tam giác ABC biết a = 16, c = 12, \(\widehat A = 60^\circ \). Tìm kết quả đúng trong các câu sau?

A. b = 6 + 2\(\sqrt {37} \);\(\widehat B \approx 40,5^\circ \);\(\widehat C \approx 79,5^\circ \);

B. b = 6 + 2\(\sqrt {37} \);\(\widehat B \approx 79,5^\circ \); \(\widehat C \approx 40,5^\circ \);

C. b = 2 + 6\(\sqrt {23} \); \(\widehat B \approx 40,5^\circ \);\(\widehat C \approx 79,5^\circ \);

D. b = 2 + 6\(\sqrt {23} \); \(\widehat B \approx 79,5^\circ \); \(\widehat C \approx 40,5^\circ \).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải:

Đáp án đúng là: B.

Áp dụng định lý côsin ta có:

 \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)\( \Leftrightarrow \frac{1}{2} = \frac{{{b^2} + {{12}^2} - {{16}^2}}}{{2.b.12}}\)\[ \Leftrightarrow 2{b^2} - 224 = 24b\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{b = 6 + 2\sqrt {37} }\\{b = 6 - 2\sqrt {37} \,\,\,(loai)}\end{array}} \right.\).

Vậy b = 6 + 2\(\sqrt {37} \).

Lại có: \(\frac{a}{{\sin A}} = \frac{c}{{\sin C}}\)\( \Rightarrow \sin C = \frac{{\sin A.c}}{a} = \frac{{\sin 60^\circ .12}}{{16}} = \frac{{3\sqrt 3 }}{8}\).

\( \Rightarrow \widehat C \approx 40,5^\circ \).

Vậy \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) \approx 180^\circ - \left( {60^\circ + 40,5^\circ } \right) = 79,5^\circ \).

Copyright © 2021 HOCTAP247