Hướng dẫn giải:
Đáp án đúng là: B.
Ta có: cos A = \(\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)= \(\frac{{{{17}^2} + {{20}^2} - {{16}^2}}}{{2.17.20}}\)= \(\frac{{433}}{{680}}\)
\( \Rightarrow \widehat A\)= 50,45\(^\circ \).
Tương tự: cos B = \(\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)= \(\frac{{{{16}^2} + {{20}^2} - {{17}^2}}}{{2.16.20}}\)= \(\frac{{367}}{{640}}\)
\( \Rightarrow \widehat B \approx 55^\circ \)
Do đó: \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) \approx 180^\circ - \left( {50,45^\circ + 55^\circ } \right) = 74,55^\circ \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247