Cho đường tròn (C): x2 + y2 – 2x – 4y + 1 = 0. Gọi d1, d2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d1 và d2 là:

Câu hỏi :

Cho đường tròn (C): x2 + y2 – 2x – 4y + 1 = 0. Gọi d1, d2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d1 và d2 là:


A. (3; 0);               



B. (–3; 0);             



C. (0; 3);               



D. (0; –3).


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: A

Ta viết phương trình d1:

Ta có 32 + 22 – 2.3 – 4.2 + 1 = 0 (đúng).

Do đó điểm M (C).

Phương trình đường tròn (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = 1, b = 2, c = 1.

Suy ra tâm I(1; 2), bán kính R = a2+b2c=1+41=2

Phương trình d1 là: (1 – 3)(x – 3) + (2 – 2)(y – 2) = 0

–2(x – 3) = 0 x – 3 = 0.

Tương tự, ta viết phương trình d2:

Ta có 12 + 02 – 2.1 – 4.0 + 1 = 0 (đúng).

Do đó N (C).

Phương trình d2 là: (1 – 1)(x – 1) + (2 – 0)(y – 0) = 0

y = 0.

Gọi A là giao điểm của d1 và d2.

Suy ra tọa độ A là nghiệm của hệ phương trình:{x3=0y=0{x=3y=0

Khi đó ta có tọa độ A(3; 0).

Vậy ta chọn phương án A.

Copyright © 2021 HOCTAP247