Cho hình thoi ABCD tâm I như hình vẽ với E, F, G, H lần lượt là trung điểm

Câu hỏi :

Cho hình thoi ABCD tâm I như hình vẽ với E, F, G, H lần lượt là trung điểm của các cạnh AB, AD, CD, CB và J, L, K, M lần lượt là giao điểm của HE với BD, EF với AC, FG với BD, GH với AC.

A. JLGD

B. JL=MK

C. JL=BE

D. JLLK

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải:

Đáp án đúng là: A.

Xét tam giác ABD có:

AB = AD (do ABCD là hình thoi)

Do đó, tam giác ABD cân tại A.

E là trung điểm của AB

F là trung điểm của AD

Do đó, EF là đường trung bình của tam giác ABD.

Lại có AI là đường cao của tam giác cân ABD (do I là giao hai đường chéo của hình thoi nên AC vuông góc với BD tại I)

Mà EF cắt AI tại L.

Từ đó ta suy ra L là trung điểm của AI.

Xét tam giác BAC có:

BA = BC (do ABCD là hình thoi)

Do đó, tam giác BAC cân.

E là trung điểm của AB

H là trung điểm của BC

Do đó, EH là đường trung bình của tam giác BAC.

Tương tự, BI là đường cao của tam giác BAC.

Mà EH cắt BI tại J

Từ đó suy ra J là trung điểm của BI.

Xét tam giác AIB có:

J là trung điểm của BI

L là trung điểm của AI

Do đó, JL là đường trung bình của tam giác AIB

JL=12AB (1), JL // AB (2)

Xét hình thoi ABCD có:

AB = CD (3)

AB // CD (4)

Do G là trung điểm của CD nên ta có: GD=12CD (5)

Từ (1), (3), (5) ta suy ra: JL = GD nên JL=GD (6)

Từ (2), (4) và (6) ta suy ra: JL=GD (do chúng cùng phương, cùng hướng và có độ dài bằng nhau).

Vậy A sai.

Copyright © 2021 HOCTAP247