Cho parabol (P) có đường chuẩn là đường thẳng ∆: x + 5 = 0. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:

Câu hỏi :

Cho parabol (P) có đường chuẩn là đường thẳng ∆: x + 5 = 0. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:

A. M(1;25), M(1;25)

B. M(1;25)

C. M(1;25)

D. M(1;25), M(1;25)

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: A

Phương trình đường chuẩn ∆: x + 5 = 0

Do đó ta có p/2 = 5

Suy ra p = 10.

Từ đó ta thu được phương trình parabol (P): y2 = 20x.

Tiêu điểm F của (P) là F(5; 0).

Giả sử điểm M(xM; yM) là điểm thuộc (P).

Khi đó yM2=20xM

Với F(5; 0)M(xM; yM) ta có FM=(xM5;yM)

Þ FM=(xM5)2+yM2

FM=xM210xM+25+20xMFM=xM2+10xM+25FM=(xM+5)2=xM+5

Theo đề, ta có FM = 6.

Û xM + 5 = 6

Û xM = 1.

Với xM = 1, ta có yM2=20.1=20

Do đó ta chọn phương án A.

Copyright © 2021 HOCTAP247