Cho tam giác ABC và G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại

Câu hỏi :

Cho tam giác ABC và G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp của tam giác. Gọi D là điểm đối xứng của A qua O. Biểu thức OB+OC bằng biểu thức nào dưới đây?

A. 2OH +HD

B. OH+HD

C. 3OH+HD

D. -OH+HD

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải:

Đáp án đúng là: A.

Xét đường tròn tâm O ngoại tiếp tam giác ABC

Có: ABD^=90o (góc nội tiếp chắn nửa đường tròn)

Do đó, BD vuông góc với AB.

Mà CH vuông góc với AB vì H là trực tâm.

Do đó, BD // CH.

Chứng minh tương tự ta có: CD // BH.

Do đó, HBDC là hình bình hành

HB+HC=HD (quy tắc hình bình hành)

Ta có: OB+OC=OH+HB+OH+HC (quy tắc ba điểm)

=2OH+(HB+HC)=2OH+HD.

Vậy OB+OC = 2OH+ HD.

Copyright © 2021 HOCTAP247