Cho tam giác ABC có trọng tâm G, lấy các điểm I, J thỏa mãn: vecto IA=2 IB

Câu hỏi :

Cho tam giác ABC có trọng tâm G, lấy các điểm I, J thỏa mãn: IA=2IB, 3JA+2JC=0 . Ba điểm nào sau đây thẳng hàng ?

A. A, B, G;

B. A, C, G;

C. A, I, G;

D. I, J, G.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải:

Đáp án đúng là: D.

+ Vì G là trọng tâm tam giác ABC nên G nằm trong tam giác ABC, do đó ba điểm A, B, G và A, C, G không thể thẳng hàng.

+ Vì IA=2IB  nên A, I, B thẳng hàng và I không phải trung điểm AB nên A, I, G không thẳng hàng.

+ Ta có: G là trọng tâm tam giác ABC nên:

JA+JB+JC=3JG

2JA+2JB+2JC=6JG

Mà:3JA+2JC=02JC=3JA

Nên:2JA+2JB3JA=6JG

2JB=6JG+JA

Mặt khác:IA=2IBIJ+JA=2IJ+2JB

2JB=6JG+JA  nên ta lại có:

IJ+JA=2IJ+6JG+JA

IJ=6JG

Vậy I, J, G thẳng hàng.

Copyright © 2021 HOCTAP247