Một người bỏ ngẫu nhiên 4 lá thư vào 4 bì thư đã được ghi sẵn địa chỉ cần gửi. Xác xuất để có ít nhất 1 lá thư bỏ đúng phong bì của nó là:

Câu hỏi :

Một người bỏ ngẫu nhiên 4 lá thư vào 4 bì thư đã được ghi sẵn địa chỉ cần gửi. Xác xuất để có ít nhất 1 lá thư bỏ đúng phong bì của nó là:

A. 5/8

B. 4/7

C. 3/8


D. Không xác định.


* Đáp án

* Hướng dẫn giải

Số phần tử không gian mẫu là n(Ω) = 4! = 24.

Gọi A là biến cố: “Ít nhất 1 lá thư bỏ đúng phong bì của nó”.

Ta xét các trường hợp sau:

• Trường hợp 1. Chỉ có 1 lá thư được bỏ đúng địa chỉ. Giả sử ta chọn 1 trong 4 lá để bỏ đúng phong bì của nó thì có 4 cách chọn. Trong mỗi cách chọn đó ta lại chọn một lá để bỏ sai, khi đó có 2 cách và có đúng 1 cách để bỏ sai hai lá thư còn lại.

Vậy trường hợp 1 sẽ có 4 · 2 · 1 = 8 cách.

Trường hợp 2. Có đúng 2 lá thư được bỏ đúng phong bì của nó. Số cách chọn 2 lá để bỏ đúng là  = 6 cách. Khi đó 2 lá còn lại nhất thiết phải bỏ sai nên có 1 cách bỏ.

Vậy trường hợp 2 có 6 · 1 = 6 cách.

• Trường hợp 3. Có 3 lá thư được bỏ đúng phong bì của nó, khi này đương nhiên là cả 4 phong bì đều bỏ đúng địa chỉ.

Trường hợp này có đúng 1 cách.

Kết hợp cả 3 trường hợp ta có 8 + 6 + 1 = 15 cách chọn.

Do đó số các kết quả thuận lợi cho biến cố A là: n(A) = 15.

Xác suất cần tìm là P(A) =n(A)n(Ω)=1524=58

Ta chọn phương án A.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Ôn tập chương X có đáp án !!

Số câu hỏi: 30

Copyright © 2021 HOCTAP247