Số nghiệm của phương trình: căn bậc hai (x + 8 - 2 căn bậc hai (x + 7) = 2

Câu hỏi :

Số nghiệm của phương trình: \[\sqrt {x + 8 - 2\sqrt {x + 7} } = 2 - \sqrt {x + 1 - \sqrt {x + 7} } \] là:


A. 0;



B. 1;



C. 2;



D. 3.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

Đặt \(t = \sqrt {x + 7} \) , điều kiện t ≥ 0.

Ta có \(\sqrt {{t^2} + 1 - 2t} = 2 - \sqrt {{t^2} - 6 - t} \)\( \Leftrightarrow \left| {t - 1} \right| = 2 - \sqrt {{t^2} - t - 6} \)

Nếu t ≥ 1 thì ta có \(3 - t = \sqrt {{t^2} - t - 6} \)

\( \Rightarrow \) 9 – 6t + t2 = t2 – t – 6

\( \Rightarrow \) – 5t + 15 = 0

\( \Rightarrow \) t = 3 (thỏa mãn)

Với t = 3 ta có \(\sqrt {x + 7} = 3\)

\( \Rightarrow \) x + 7 = 9

\( \Rightarrow \) x = 2

Nếu t < 1 thì ta có \(1 + t = \sqrt {{t^2} - t - 6} \)

t2 + 2t + 1 = t2 – t – 6

\( \Leftrightarrow t = - \frac{7}{3}\)(loại)

Vậy phương trình có 1 nghiệm x = 2.

Copyright © 2021 HOCTAP247