Tổng các nghiệm phương trình x^2 - 6x + 9 = 4 căn bậc hai (x^2 -6x + 6)

Câu hỏi :

Tổng các nghiệm phương trình \({x^2} - 6x + 9 = 4\sqrt {{x^2} - 6x + 6} \)


A. 8;



B. 10;



C. 6;



D. 12.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Đặt \(\sqrt {{x^2} - 6x + 6} = t(t > 0)\) ta có

t2 + 3 – 4t = 0

\( \Rightarrow \) t = 1 (thỏa mãn) hoặc t = 3 (thỏa mãn)

Với t = 1 ta có phương trình \(\sqrt {{x^2} - 6x + 6} = 1\)

\( \Rightarrow \) x2 – 6x + 6 = 1

\( \Rightarrow \) x2 – 6x + 5 = 0

\( \Rightarrow \) x = 1 hoặc x = 5

Thay lần lượt các nghiệm trên vào phương trình đã cho, ta thấy x = 1, x = 5 thoả mãn

Với t = 3 ta có phương trình \(\sqrt {{x^2} - 6x + 6} = 3\)

\( \Rightarrow \) x2 – 6x + 6 = 9

\( \Rightarrow \) x2 – 6x – 3 = 0

\( \Rightarrow \) x = \(3 + 2\sqrt 3 \) hoặc x = \(3 - 2\sqrt 3 \)

Thay lần lượt các nghiệm trên vào phương trình đã cho, ta thấy x = \(3 + 2\sqrt 3 \), x = \(3 - 2\sqrt 3 \)thoả mãn

Vậy tổng các nghiệm của phương trình là: 1 + 5 + \(3 + 2\sqrt 3 \)+\(3 - 2\sqrt 3 \) = 12.

Copyright © 2021 HOCTAP247