Cho đa giác đều có n cạnh n ≥ 4. Giá trị của n để đa giác có số đường chéo bằng số cạnh thuộc khoảng nào trong các khoảng sau
A. (4; 7);
B. (6; 10);
C. (9; 12);
D. (12; 20).
Đáp án đúng là: A
Tổng số đường chéo và cạnh của đa giác là : \(C_n^2\)
\( \Rightarrow \) Số đường chéo của đa giác là \(C_n^2 - n\).
Ta có: Số đường chéo bằng số cạnh
\( \Leftrightarrow C_n^2 - n = n\)\( \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 2n\)\( \Leftrightarrow \) n(n – 1) = 4n \( \Leftrightarrow \) n – 1 = 4 \( \Leftrightarrow \)n = 5
Vậy n thuộc khoảng (4; 7)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247