Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện \(C_m^2 = 153\) và \(C_m^n = C_m^{n + 2}\). Khi đó m + n bằng
A. 25;
B. 24;
C. 26;
D. 23.
Đáp án đúng là: C
Điều kiện: m ≥ n + 2; m, n \( \in \) ℕ
Theo tính chất \(C_m^n = C_m^{m - n}\) nên từ \(C_m^n = C_m^{n + 2}\) suy ra 2n + 2 = m
\(C_m^2 = 153\)\( \Leftrightarrow \frac{{m!}}{{2!(m - 2)!}} = 153\) \( \Leftrightarrow \frac{{m\left( {m - 1} \right)}}{2} = 153\)
\( \Leftrightarrow {m^2} - m - 306 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 18\\m = - 17\end{array} \right.\)
Kết hợp với điều kiện m = 18 ⇒ n = 8
Vậy m + n = 18 + 8 = 26.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247