Tìm số hạng chứa x^4 trong khai triển (x^2 - 1/x)^n biết A 2 n - C 2 n = 10

Câu hỏi :

Tìm số hạng chứa x4 trong khai triển \({\left( {{x^2} - \frac{1}{x}} \right)^n}\) biết \(A_n^2 - C_n^2 = 10\)


A. – 20;



B. 10;



C. – 10;



D. 20.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

Ta có: \(A_n^2 - C_n^2 = 10\)\( \Leftrightarrow \frac{{n!}}{{\left( {n - 2} \right)!}} - \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 10\)

\( \Leftrightarrow \frac{{n(n - 1)(n - 2)...1}}{{(n - 2)...1}} - \frac{{n(n - 1)(n - 2)...1}}{{2.(n - 2)...1}} = 10\)

\( \Leftrightarrow \) n(n – 1) – \(\frac{1}{2}\) n(n – 1) = 10

\( \Leftrightarrow \) \(\frac{1}{2}\)n(n – 1) = 10 \( \Leftrightarrow \) n2 – n – 20 = 0\( \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = - 4\,\end{array} \right.\).

Kết hợp với điều kiện n = 5 thoả mãn

Nhị thức \({\left( {{x^2} - \frac{1}{x}} \right)^n}\)

Ta có công thức số hạng tổng quát trong khai triển (a + b)n\(C_n^k\)an – k .bk (k ≤ n)

Thay a = x2, b = \( - \frac{1}{x}\) vào trong công thức ta có

\(C_5^k\)(x2)5 – k .\({\left( { - \frac{1}{x}} \right)^k}\) = ( –1)k\(C_5^k\)(x)10 – 3k

Số hạng cần tìm chứa x4  nên ta có 10 – 3k = 4

Vậy k = 2 thoả mãn bài toán

Vậy hệ số của số hạng không chứa x trong khai triển là: ( –1)2\[C_5^2\] = 10

Copyright © 2021 HOCTAP247