Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?
A. 315;
B. 560;
C. 210;
D. 120.
Đáp án đúng là: B
Vì chọn ra 4 học sinh trong đó có ít nhất hai nữ ta có các trường hợp sau
Trường hợp 1: Chọn được 2 nữ và 2 nam
Số cách chọn là: \(C_7^2.C_6^2\) = 315
Trường hợp 2: Chọn được 3 nữ và 1 nam
Số cách chọn là: \(C_7^3.C_6^1\) = 210
Trường hợp 3: Chọn được 4 nữ và 0 nam
Số cách chọn là: \(C_7^4.C_6^0\) = 35
Áp dụng quy tắc cộng ta có: 315 + 210 + 35 = 560 cách.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247