Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm tam giác ABC và B’ là điểm đối xứng với B qua tâm O. Hãy so sánh các vectơ và , và .
Do BB’ là đường kính nên = 90° ( góc nội tiếp chắn nửa đường tròn )
⇒ BC ⊥ B’C.
H là trực tâm tam giác ABC nên BC ⊥ AH.
Suy ra AH // B’C ( do đều vuông góc với BC ).
Do BB’ là đường kính nên = 90° ( góc nội tiếp chắn nửa đường tròn )
⇒ BA ⊥ B’A.
H là trực tâm tam giác ABC nên CH ⊥ BA.
Suy ra CH // B’A ( do đều vuông góc với BA ).
Như vậy AB’CH là hình bình hành ( DHNB hình bình hành )
⇒ = và = .
Vậy = và = .
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247