Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu sau:
a) 90; 56; 50; 45; 46; 48; 52; 43.
a) Ta có: n = 8.
Số trung bình cộng:
Phương sai:
= 202,6875.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
43; 45; 46; 48; 50; 52; 56; 90
Khi đó, khoảng biến thiên R = 90 – 43 = 47.
Vì n = 8 là số chẵn nên ta có tứ phân vị thứ hai
Q2 = (48 + 50) : 2 = 49.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 43; 45; 46; 48.
Vậy Q1 = (45 + 46) : 2 = 45,5.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 50; 52; 56; 90.
Vậy Q3 = (52 + 56) : 2 = 54.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 54 – 45,5 = 8,5.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 54 + 1,5.8,5 = 66,75
Hoặc x < Q1 − 1,5∆Q = 45,5 − 1,5.8,5 = 32,75
Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 90.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247