Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có)

Câu hỏi :

Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân v và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:

b)

Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) (ảnh 1)

* Đáp án

* Hướng dẫn giải

b) Ta có: n = 1 + 6 + 8 + 9 + 4 + 2 = 30.

Số trung bình cộng:

x¯=1.2+6.23+8.24+9.25+4.26+2.2730=1436.

Phương sai:

S2=1301.22+6.232+8.242+9.252+4.262+2.27214362

≈ 17,74.

Sắp xếp mẫu số liệu theo thứ tự không giảm:

2; 23; 23; 23; 23; 23; 23; 24; 24; 24; 24; 24; 24; 24; 24; 25; 25; 25; 25; 25; 25; 25; 25; 25; 26; 26; 26; 26; 27; 27

Khi đó, khoảng biến thiên R = 27 – 2 = 25.

Vì n = 30 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (24 + 25) : 2 = 24,5.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 2; 23; 23; 23; 23; 23; 23; 24; 24; 24; 24; 24; 24; 24; 24.

Vậy Q1 = 24.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 25; 25; 25; 25; 25; 25; 25; 25; 25; 26; 26; 26; 26; 27; 27.

Vậy Q3 = 25.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 25 – 24 = 1.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 25 + 1,5 = 26,5

Hoặc x < Q1 − 1,5∆Q = 24 − 1,5.1 = 22,5.

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 2 và 27.

Copyright © 2021 HOCTAP247