Miền nghiệm của hệ bất phương trình x + y - 2 lớn hơn bằng 0; x + 2y + 1 nhỏ hơn bằng 0 là miền chứa điểm nào sau đây? A. M(0; 1); B. N(8; –5); C. P(1; 2); D. Q(–2; 0).

Câu hỏi :

Miền nghiệm của hệ bất phương trình {x+y-20x+2y+10  là miền chứa điểm nào sau đây?

A. M(0; 1);

B. N(8; –5);

C. P(1; 2);

D. Q(–2; 0).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: B

• Xét điểm M(0; 1):

Ta có: \(\left\{ \begin{array}{l}0 + 1 - 2 = - 1 < 0\\0 + 2.1 + 1 = 3 > 0\end{array} \right.\)

Do đó cặp số (0; 1) không thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.

Vậy miền nghiệm của hệ bất phương trình không chứa điểm M(0; 1).

• Xét điểm N(8; –5):

Ta có: \(\left\{ \begin{array}{l}8 + \left( { - 5} \right) - 2 = 1 \ge 0\\8 + 2.\left( { - 5} \right) + 1 = - 1 \le 0\end{array} \right.\)

Do đó cặp số (8; –5) thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.

Vậy miền nghiệm của hệ bất phương trình chứa điểm N(8; –5).

• Xét điểm P(1; 2):

Ta có: \(\left\{ \begin{array}{l}1 + 2 - 2 = 1 \ge 0\\1 + 2.2 + 1 = 6 > 0\end{array} \right.\)

Do đó cặp số (1; 2) không thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.

Vậy miền nghiệm của hệ bất phương trình không chứa điểm P(1; 2).

• Xét điểm Q(–2; 0):

Ta có: \(\left\{ \begin{array}{l} - 2 + 0 - 2 = - 4 < 0\\ - 2 + 2.0 + 1 = - 1 \le 0\end{array} \right.\)

Do đó cặp số (–2; 0) không thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.

Vậy miền nghiệm của hệ bất phương trình không chứa điểm Q(–2; 0).

Ta chọn phương án B.

Copyright © 2021 HOCTAP247