d) 1/ x^2 - x + 1 hơn hơn hoặc bằng 1/ 2x^2 + x + 2 .

Câu hỏi :

d) 1x2x+112x2+x+2.

* Đáp án

* Hướng dẫn giải

d)

Xét phương trình bậc hai x2 – x + 1 = 0 có a = 1 > 0 và ∆1 = (–1)2 – 4.1.1 = –3 < 0 do đó, x2 – x + 1 > 0 với mọi số thực x.

Xét phương trình bậc hai 2x2 + x + 2 = 0 có a = 2 > 0 và ∆2 = 12 – 4.2.2 = –15 < 0 do đó, 2x2 + x + 2 > 0 với mọi số thực x

Do đó, tập xác định của bất phương trình 1x2x+112x2+x+2là D = ℝ.

Khi đó, 1x2x+112x2+x+2

2x2 + x + 2 ≤ x2 – x + 1

x2 + 2x + 1 ≤ 0

(x + 1)2 ≤ 0

Do (x + 1)2 ≥ 0 với mọi số thực x nên ta có:

(x + 1)2 ≤ 0

(x + 1)2 = 0

x + 1 = 0

x = –1

Vậy tập nghiệm của bất phương trình 1x2x+112x2+x+2là S = {–1}.

Copyright © 2021 HOCTAP247