Tìm các giá trị của tham số m để phương trình x^2 – 2(m – 1)x + 4m^2 – m = 0 a) có hai nghiệm phân biệt;

Câu hỏi :

Tìm các giá trị của tham số m để phương trình x2 – 2(m – 1)x + 4m2 – m = 0

a) có hai nghiệm phân biệt;

* Đáp án

* Hướng dẫn giải

Xét x2 – 2(m – 1)x + 4m2 – m = 0 có:

a = 1 > 0

∆’ = [–(m – 1)]2 – 1.(4m2 – m) = m2 – 2m + 1 – 4m2 + m = –3m2 – m + 1 .

a)

Để phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm phân biệt

∆’ > 0

–3m2 – m + 1 > 0

Xét phương trình bậc hai –3m2 – m + 1 = 0 có a = –3 < 0 và ∆ma = (–1)2 – 4.(–3).1 = 13 > 0

Do đó, phương trình –3m2 – m + 1 = 0 có hai nghiệm phân biệt là:

m1=1+136;m2=1136

Do đó, –3m2 – m + 1 > 0 1136<m<1+136

Vậy khi 1136<m<1+136thì phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm phân biệt.

Copyright © 2021 HOCTAP247