Cho đường tròn (C) có phương trình x^2+y^2+3x-5y+2=0 và ba điểm

Câu hỏi :

Cho đường tròn (C) có phương trình x2+y2+3x5y+2=0 và ba điểm A(-1; 2), B(3; 0), C(2; 3). Khẳng định nào sau đây là đúng?

A. Đường tròn (C) không cắt cạnh nào của tam giác ABC

B.Đường tròn (C) chỉ cắt một cạnh của tam giác ABC

C.Đường tròn (C) chỉ cắt hai cạnh của tam giác ABC

D.Đường tròn (C) cắt cả ba cạnh của tam giác ABC

* Đáp án

C

* Hướng dẫn giải

Ta sẽ xét xem trong 3 điểm A, B, C điểm nào nằm trong, điểm nào nằm ngoài đường  tròn. Từ đó ta sẽ biết được đường tròn cắt những cạnh nào của tam giác ABC.

Ta có: (-1)2 + 22 + 3.(-1) -  5.2 + 2 = -6 < 0 nên điểm A nằm trong đường tròn

  32 +  02+ 3.3  5. 0 + 2 =15 > 0 nên điểm B nằm ngoài đường tròn

22 + 32 + 3.2 -  5.3 + 2 = 4 >0 nên điểm C nằm ngoài đường tròn.

Do vậy đường tròn cắt hai cạnh của tam giác là AB và AC.

Chọn C.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm: Phương trình đường tròn có đáp án !!

Số câu hỏi: 40

Copyright © 2021 HOCTAP247