A. m0 ∈ (; 3).
B. m0 ∈ [−; 0].
C. m0 ∈ (0; ].
D. m0 ∈ [3; +∞).
Tập xác định D = R nên ∀x ∈ D ⇒ −x ∈ D.
Ta có f(−x) = (−x)3 + (m2 − 1)(−x)2 + 2(−x) + m – 1
= −x3 + (m2 − 1)x2 − 2x + m− 1.
Để hàm số đã cho là hàm số lẻ khi f(−x) = −f(x), với mọi x ∈ D
⇔ −x3 + (m2 − 1)x2 − 2x + m – 1 = −[x3 + (m2 − 1)x2 + 2x + m − 1],
với mọi x ∈ D
⇔ 2(m2 − 1)x2 + 2(m − 1) = 0, với mọi x ∈ D
⇔ ⇔ m = 1 ∈ (; 3).
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247