Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí tương đối của mỗi điểm A(1; -1), B(-\(\sqrt 2 \); \(\sqrt 2 \) ) và C(1; 2) đối với đường tròn (O; 2)
Gọi R là bán kính của đường tròn (O; 2). Ta có: R = 2
OA2 = 12 + 12 = 2 ⇒ OA = √2 < 2
Vì OA < R nên điểm A nằm trong đường tròn (O; 2)
OB2 = (√2 )2 + (√2 )2 = 2 + 2 = 4 ⇒ OB = 2
Vì OB = R nên điểm B thuộc đường tròn (O; 2)
OC2 = 12 + 22 = 1 + 4 = 5 ⇒ OC = √5 > 2
-- Mod Toán 9
Copyright © 2021 HOCTAP247