Bài tập 13 trang 106 SGK Toán 9 Tập 1

Lý thuyết Bài tập
Câu hỏi:

Bài tập 13 trang 106 SGK Toán 9 Tập 1

Cho đường tròn (O) có các dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm E nằm bên ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Chứng minh rằng:

a) EH=EK

b) EA=EC

Bài 13 này cho các em biết được cách chứng minh hai đoạn thẳng bằng nhau thông qua hai dây cung bằng nhau:

bài 13

Câu a: Ta có:

\(AH=HB\Rightarrow OH\perp AB\)

\(KC=KD\Rightarrow OK\perp CD\)

Lại có:

\(AB=CD\Rightarrow OH=OK\)

\(\Rightarrow \Delta HOE=\Delta KOE(ch.cgv)\)

\(\Rightarrow EH=EK(1)\)

Câu b: Ta lại có:

\(AB=CD\Leftrightarrow \frac{AB}{2}=\frac{CD}{2}\Leftrightarrow AH=CK(2)\)

Từ (1) và (2):

\(\Rightarrow EH+HA=EK+KC\Leftrightarrow EA=EC\)

 

-- Mod Toán 9

Copyright © 2021 HOCTAP247