A. \(\int {\frac{{dx}}{{5x - 2}} = 5\ln \left| {5x - 2} \right| + C} \)
B. \(\int {\frac{{dx}}{{5x - 2}} = - \frac{1}{2}\ln (5x - 2) + C} \)
C. \(\int {\frac{{dx}}{{5x - 2}} = \ln \left| {5x - 2} \right| + C} \)
D. \(\int {\frac{{dx}}{{5x - 2}} = \frac{1}{5}\ln \left| {5x - 2} \right| + C} \)
A. \(\int {f\left( x \right){\rm{d}}x} = - \cot x + C\)
B. \(\int {f\left( x \right){\rm{d}}x} = \tan x + C\)
C. \(\int {f\left( x \right){\rm{d}}x} = - \tan x + C\)
D. \(\int {f\left( x \right){\rm{d}}x} = \cot x + C\)
A. \(\int {2\sin xdx} = {\sin ^2}x + C\)
B. \(\int {2\sin xdx} = 2\cos x + C\)
C. \(\int {2\sin xdx} = - 2\cos x + C\)
D. \(\int {2\sin xdx} = \sin 2x + C\)
A. \(I = \int\limits_0^3 {\sqrt u du} \)
B. \(I = \frac{1}{2}\int\limits_1^2 {\sqrt u du} \)
C. \(I = 2\int\limits_0^3 {\sqrt u du} \)
D. \(I = \int\limits_1^2 {\sqrt u du} \)
A. \(\int\limits_a^b {f(x)dx} = F(b) + F(a)\)
B. \(\int\limits_a^b {F(x)dx} = f(b) + f(a)\)
C. \(\int\limits_a^b {f(x)dx} = F(b) - F(a)\)
D. \(\int\limits_a^b {F(x)dx} = f(b) - f(a)\)
A. \(I=27\)
B. \(I=3\)
C. \(I=9\)
D. \(I=1\)
A. \(24\)
B. \(-7\)
C. \(-4\)
D. \(8\)
A. \(I = \frac{2}{{\ln 3}}\)
B. \(I = \frac{3}{{\ln 3}}\)
C. \(I=2\)
D. \(I = \frac{1}{4}\)
A. \(\int\limits_a^b {2({x^2} + 1)dx} \)
B. \(\int\limits_a^b {2\sqrt {{x^2} + 1} dx} .\)
C. \(\int\limits_a^b {2\pi ({x^2} + 1)dx} \)
D. \(\pi \int\limits_a^b {4({x^2} + 1)dx} \)
A. \(F(x) = {e^x} + {x^2} + \frac{3}{2}\)
B. \(F(x) = {e^x} + {x^2} + \frac{5}{2}\)
C. \(F(x) = {e^x} + {x^2} + \frac{1}{2}\)
D. \(F(x) = 2{e^x} + {x^2} - \frac{1}{2}\)
A. \(\int {f(ax + b)} = \frac{1}{a}F(ax + b) + C\)
B. \(\int {f(ax + b)} = aF(ax + b) + C\)
C. \(\int {f(ax + b)} = F(ax + b) + C\)
D. \(\int {f(ax + b)} = aF(x) + b + C\)
A. \(\frac{{{\pi ^2}}}{2}\)
B. \(\frac{{3{\pi ^2}}}{4} - 2\pi \)
C. \( - \frac{{3{\pi ^2}}}{4} + \pi \)
D. \(\frac{{{\pi ^2}}}{4}\)
A. \(a-b\)
B. \(-a-b\)
C. \(a+b\)
D. \(b-a\)
A. \(a=2\)
B. \(a=-2\)
C. \(a=1\)
D. \(a=0\)
A. \(\int {\cos 3xdx = \frac{{\sin 3x}}{3} + C} \)
B. \(\int {\cos 3xdx = 3\sin 3x + C} \)
C. \(\int {\cos 3xdx = - \frac{{\sin 3x}}{3} + C} \)
D. \(\int {\cos 3xdx = \sin 3x + C} \)
A. \(\left| {\int\limits_{ - 2}^1 {({x^3} - x)dx} } \right|.\)
B. \(\int\limits_{ - 2}^1 {({x^3} - x)dx} .\)
C. \(\int\limits_{ - 1}^1 {\left| {{x^3} - x} \right|dx} .\)
D. \(\int\limits_{ - 2}^1 {\left| {{x^3} - x} \right|dx} .\)
A. \(\sin 2x + C\)
B. \( - \cos x - \sin x + C\)
C. \(\cos x + \sin x + C\)
D. \(\sin x - \cos x + C\)
A. \(3\)
B. \(1\)
C. \(-1\)
D. \(2\)
A. \(I = \frac{1}{4}\ln \left| {\frac{{x - 2}}{{x + 2}}} \right|\)
B. \(I = \frac{1}{2}\ln \left| {\frac{{x + 2}}{{x - 2}}} \right|\)
C. \(I = \frac{1}{4}\ln \left| {\frac{{x + 2}}{{x - 2}}} \right|\)
D. \(I = \frac{1}{2}\ln \left| {\frac{{x - 2}}{{x + 2}}} \right|\)
A. \(9\)
B. \(\frac{1}{3}\)
C. \(17\)
D. \(7\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247