A. \(\int {{{10}^x}{\rm{d}}x} = \frac{{{{10}^x}}}{{\ln 10}} + C.\)
B. \(\int {{{10}^x}{\rm{d}}x} = {10^x}\ln 10 + C.\)
C. \(\int {{{10}^x}{\rm{d}}x} = {10^{x + 1}} + C.\)
D. \(\int {{{10}^x}{\rm{d}}x} = \frac{{{{10}^{x + 1}}}}{{x + 1}} + C.\)
A. \(\int {\frac{1}{{{x^2}}}} dx = \ln {x^2} + C\,.\,\)
B. \(\int {c{\rm{os}}x} dx = {\mathop{\rm s}\nolimits} {\rm{in}}x + C.\)
C. \(\int {\frac{1}{{{{\sin }^2}x}}} dx = \cot x + C.\)
D. \(\int {{e^{2x}}} dx = 2{e^x} + C\,.\,\)
A. \(\int {\left( {{e^x} + 2\sin x} \right){\rm{d}}x} = {e^x} - {\cos ^2}x + C.\)
B. \(\int {\left( {{e^x} + 2\sin x} \right){\rm{d}}x} = {e^x} + {\sin ^2}x + C.\)
C. \(\int {\left( {{e^x} + 2\sin x} \right){\rm{d}}x} = {e^x} - 2\cos x + C.\)
D. \(\int {\left( {{e^x} + 2\sin x} \right){\rm{d}}x} = {e^x} + 2\cos x + C.\)
A. \(\int {f\left( x \right)dx = } \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2 + C.\)
B. \(\int {f\left( x \right)dx = } \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + C.\)
C. \(\int {f\left( x \right)dx = } 2x + 1 + C.\)
D. \(\int {f\left( x \right)dx = } \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x + C.\)
A. \(\int {x{{({x^2} + 7)}^{15}}{\rm{d}}} x = \frac{1}{2}{\left( {{x^2} + 7} \right)^{16}} + C\)
B. \(\int {x{{({x^2} + 7)}^{15}}{\rm{d}}} x = \frac{1}{{32}}{\left( {{x^2} + 7} \right)^{16}} + C\)
C. \(\int {x{{({x^2} + 7)}^{15}}{\rm{d}}} x = - \frac{1}{{32}}{\left( {{x^2} + 7} \right)^{16}} + C\)
D. \(\int {x{{({x^2} + 7)}^{15}}{\rm{d}}} x = \frac{1}{{16}}{\left( {{x^2} + 7} \right)^{16}} + C\)
A. \(\int {f'} \left( x \right){e^{2x}}dx = 2{x^2} - 2x + C\)
B. \(\int {f'} \left( x \right){e^{2x}}dx = - {x^2} + 2x + C\)
C. \(\int {f'} \left( x \right){e^{2x}}dx = - 2{x^2} + 2x + C\)
D. \(\int {f'} \left( x \right){e^{2x}}dx = - {x^2} + x + C\)
A. 4aln4
B. 6aln2
C. 3aln2
D. 2aln4
A. \(I = \frac{{17}}{2}\)
B. \(I = \frac{{7}}{2}\)
C. \(I = \frac{{5}}{2}\)
D. \(I = \frac{{11}}{2}\)
A. (4; 6)
B. (8; 10)
C. (2; 4)
D. (6; 8)
A. I = 8
B. I = 32
C. I = 4
D. I = 16
A. \(\int\limits_1^2 {\sqrt u {\rm{d}}u} \)
B. \(I = \frac{2}{3}\sqrt {27} \)
C. \(I = \int\limits_0^3 {\sqrt u {\rm{d}}u} \)
D. \(I = \frac{2}{3}{3^{\frac{3}{2}}}\)
A. \(I = 2\pi + 1\)
B. \(I = 2\pi + 2\)
C. \(I = 2\pi \)
D. \(I = - 2\pi \)
A. I = 57
B. I = 67
C. I = 37
D. I = 47
A. \(S = \frac{7}{2}\)
B. S = 4
C. \(S = \frac{3}{2}\)
D. \(S = \frac{5}{2}\)
A. \(S = \int\limits_{ - 3}^0 {f(x)dx} - \int\limits_0^4 {f(x)dx} \)
B. \(S = \int\limits_{ - 3}^0 {f(x)dx} + \int\limits_0^4 {f(x)dx} \)
C. \(S = \int\limits_0^{ - 3} {f(x)dx} + \int\limits_0^4 {f(x)dx} \)
D. \(S = \int\limits_{ - 3}^4 {f(x)dx} \)
A. \({\rm{S}} = 1 + \ln 3\)
B. \({\rm{S}} = 1 - \frac{1}{2}\ln 3\)
C. \({\rm{S}} = \frac{1}{2}\ln 3\)
D. \({\rm{S}} = \frac{1}{2} + \ln 3\)
A. \(V = \frac{{16\pi }}{{15}}\)
B. \(V = \frac{{16}}{{15}}\)
C. \(V = \frac{{4\pi }}{3}\)
D. \(V = \frac{4}{3}\)
A. \(V = \frac{9}{{15}}\)
B. \(V = \frac{{8\pi }}{{15}}\)
C. \(V = \frac{8}{{15}}\)
D. \(V = \frac{{9\pi }}{{15}}\)
A. \(S = 2\pi + \frac{1}{3}\)
B. \(S = 2\pi - \frac{2}{3}\)
C. \(S = 2\pi - \frac{4}{3}\)
D. \(S = 2\pi + \frac{4}{3}\)
A. M(6; 17)
B. M(17; 6)
C. M(-17; -6)
D. M(-6; -17)
A. \(\left| z \right| = \frac{{\sqrt {26} }}{3}\)
B. \(\left| z \right| = 3\sqrt {26} \)
C. \(\left| z \right| = 2\sqrt {26} \)
D. \(\left| z \right| = \frac{{\sqrt {26} }}{2}\)
A. P = 1+ i
B. P = 1- i
C. P = -1+ i
D. P = -1 - i
A. P = 3
B. P = 10
C. P = 7
D. P = 5
A. \(P = 2\sqrt 5 \)
B. P = 20
C. P = 10
D. \(P = \sqrt 5 \)
A. \({z^2} + 4z + 13 = 0\)
B. \({z^2} - 4z + 12 = 0\)
C. \({z^2} + 4z + 12 = 0\)
D. \({z^2} - 4z + 13 = 0\)
A. \(I\left( {\frac{3}{2};3; - \frac{1}{2}} \right)\)
B. \(I\left( {\frac{3}{2};3;\frac{1}{2}} \right)\)
C. \(I\left( {\frac{3}{2};2; - \frac{1}{2}} \right)\)
D. \(I\left( {3;6; - 1} \right)\)
A. \(AB = 2\sqrt 3 \)
B. \(AB = \sqrt {14} \)
C. \(AB = \sqrt {13} \)
D. \(AB = \sqrt {6} \)
A. m = -4
B. m = 2
C. m = 1
D. m = 0
A. \({\left( {x + 1} \right)^2} + {y^2} + {z^2} = 4\)
B. \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 2\)
C. \({\left( {x + 1} \right)^2} + {y^2} + {z^2} = 2\)
D. \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 4\)
A. I (1; 2; -3) và R = 4
B. I (-1; -2; 3) và R = 4
C. I (1; 2; -3) và R = 16
D. I (-1; -2; 3) và R = 16
A. \(x - 2y - 3z + 6 = 0.\)
B. \(x - 2y + 3z - 12 = 0.\)
C. \(x - 2y - 3z - 6 = 0.\)
D. \(x - 2y + 3z + 12 = 0.\)
A. \(\overrightarrow n = \left( {3; - 5; - 2} \right)\)
B. \(\overrightarrow n = \left( {-4; 5; - 2} \right)\)
C. \(\overrightarrow n = \left( {3; - 4; 5} \right)\)
D. \(\overrightarrow n = \left( {3; - 4; 2} \right)\)
A. \(M\left( { - 2;\,1;\, - 8} \right)\)
B. \(N\left( {4;\,2;\,1} \right)\)
C. \(P\left( {3;\,1;\,3} \right)\)
D. \(Q\left( {1;\,2;\, - 5} \right)\)
A. P(0;0; - 5)
B. N( - 5;0;0).
C. Q(2; - 1;5).
D. M(1;1;6).
A. \(d = \frac{5}{{\sqrt {29} }}.\)
B. \(d = \frac{5}{{29}}.\)
C. \(d = \frac{5}{9}.\)
D. \(d = \frac{{\sqrt 5 }}{3}.\)
A. \(\vec a = ( - 1;0; - 2)\)
B. \(\vec b = ( - 1;0;2)\)
C. \(\vec c = (1;2;2)\)
D. \(\vec d = ( - 1;1;2)\)
A.
\(\left\{ \begin{array}{l}
x = - 2 + 2t\\
y = - 3t\\
z = 1 + t
\end{array} \right..\)
B.
\(\left\{ \begin{array}{l}
x = - 2 + 4t\\
y = - 6t\\
z = 1 + 2t
\end{array} \right..\)
C.
\(\left\{ \begin{array}{l}
x = 4 + 2t\\
y = - 3t\\
z = 2 + t
\end{array} \right..\)
D.
\(\left\{ \begin{array}{l}
x = 2 + 2t\\
y = - 3t\\
z = - 1 + t
\end{array} \right..\)
A. \(M\left( {2;2;2} \right).\)
B. \(M\left( {2;2;4} \right).\)
C. \(M\left( {2;3;4} \right).\)
D. \(M\left( {2;2;10} \right).\)
A. \(Q\left( { - 2; - 4;7} \right)\)
B. \(P\left( {7;2;1} \right)\)
C. \(M\left( {1; - 2;3} \right)\)
D. \(N\left( {4;0; - 1} \right)\)
A.
\(\left\{ \begin{array}{l}
x = 1 + 3t\\
y = 2 - 4t\\
z = 3 - 7t
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = - 1 + 8t\\
y = - 2 + 6t\\
z = - 3 - 14t
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = 1 + 4t\\
y = 2 + 3t\\
z = 3 - 7t
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = - 1 + 4t\\
y = - 2 + 3t\\
z = - 3 - 7t
\end{array} \right.\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247