A. \(\cos \alpha = \;\frac{1}{2}\;;\;\;\sin \alpha = \;\frac{{\sqrt 3 }}{2}\;;\quad \tan \alpha \; = \;\sqrt 3 \;;\;\;\cot \alpha = \;\frac{1}{{\sqrt 3 }}\)
B. \(\cos \alpha = \; - \frac{1}{2}\;;\;\;\sin \alpha = \; - \frac{{\sqrt 3 }}{2}\;;\quad \tan \alpha \; = \; - \sqrt 3 \;;\;\;\cot \alpha = \; - \frac{1}{{\sqrt 3 }}\)
C. \(\cos \alpha = \; - \frac{{\sqrt 2 }}{2}\;;\;\;\sin \alpha = \;\frac{{\sqrt 2 }}{2}\;;\quad \tan \alpha \; = \; - 1\;;\;\;\cot \alpha = \; - 1\)
D. \(\cos \alpha = \;\frac{{\sqrt 3 }}{2}\;;\;\;\sin \alpha = \; - \frac{1}{2}\;;\quad \tan \alpha \; = \; - \frac{1}{{\sqrt 3 }}\;;\;\;\cot \alpha = \; - \sqrt 3 \)
B
\(\begin{array}{l}
\cos {240^ \circ } = \cos \left( {{{360}^ \circ } - {{120}^ \circ }} \right) = \cos \left( { - {{120}^ \circ }} \right) = \cos \left( {60 - 180} \right) = \cos \left[ { - \left( {{{180}^ \circ } - {{60}^ \circ }} \right)} \right] = \cos \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = - \cos {60^ \circ } = - \frac{1}{2}\\
\sin {240^ \circ } = \sin \left( {{{360}^ \circ } - {{120}^ \circ }} \right) = \sin \left( { - {{120}^ \circ }} \right) = - \sin {120^ \circ } = - \sin \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = - \sin 60 = - \frac{{\sqrt 3 }}{2}\\
\tan {240^ \circ } = \frac{{\sin {{240}^ \circ }}}{{{\rm{cos}}{{240}^ \circ }}} = - \sqrt 3 \\
\cot {240^ \circ } = \frac{1}{{\tan {{240}^ \circ }}} = - \frac{1}{{\sqrt 3 }}
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247