Cho mệnh đề A: “\[\forall x \in \mathbb{R},{x^2} - x + 7 < 0\]”. Mệnh đề phủ định của A là:
A. \[\overline{A}:''\forall x\in \mathbb{R},{{x}^{2}}-x+7>0''\];
B. \[\overline{A}:''\forall x\in \mathbb{R},{{x}^{2}}-x+7>0''\];
C. \[\overline{A}:''\exists x\in \mathbb{R},\,{{x}^{2}}-x+7<0''\];
D. \[\overline{A}:''\exists \,x\in \mathbb{R},{{x}^{2}}-\text{ }x+7\ge 0''\].
Đáp án đúng là: D
Phủ định của \[\forall \] là \[\exists \]
Phủ định của < là ≥
Do đó phủ định của mệnh đề A: “\[\forall x\in \mathbb{R},{{x}^{2}}-x+7<0\]” là
\(\overline A \): “\[\exists x \in \mathbb{R},{x^2} - x + 7 \ge 0\]”.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247