Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC

Câu hỏi :

Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.

Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC (ảnh 1)

Phát biểu nào dưới đây là sai.


A. \(\overrightarrow {MN} = \overrightarrow {PC} \);



B. \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \);



C. \(\overrightarrow {MB} = \overrightarrow {AM} \);



D. \(\overrightarrow {MN} = \overrightarrow {PB} \).


* Đáp án

* Hướng dẫn giải

Đáp án đúng là D

+) Xét tam giác ABC, có:

M là trung điểm AB

N là trung điểm của AC

MN là đường trung bình của tam giác ABC

MN // BC và MN = \(\frac{1}{2}\)BC

Mà BP = PC = \(\frac{1}{2}\)BC (P là trung điểm của BC)

MN = CP = PB (1)

Vì MN // BC nên MN // CP. Khi đó \(\overrightarrow {MN} \)\(\overrightarrow {PC} \) cùng phương. Suy ra \(\overrightarrow {MN} \)\(\overrightarrow {PC} \) cùng hướng (2)

Từ (1) và (2) suy ra \(\overrightarrow {MN} \) = \(\overrightarrow {CP} \). Do đó đáp án A đúng.

Tương tự MN //BC hay MN // PB. Khi đó \(\overrightarrow {MN} \)\(\overrightarrow {PB} \) cùng phương nhưng ngược hướng (3)

Từ (1) và (3) suy ra \(\overrightarrow {MN} \) không bằng \(\overrightarrow {PB} \). Do đó đáp án D sai.

+) Ta có \(\overrightarrow {AA} \)\(\overrightarrow {PP} \) là các vectơ – không.

Mà mọi vectơ – không có cùng độ dài và cùng hướng nên bằng nhau

Suy ra \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \). Do đó đáp án B đúng.

+) Hai vec tơ \(\overrightarrow {AM} \)\(\overrightarrow {MB} \) cùng hướng

Vì M là trung điểm của AB nên AM = MB

Suy ra \(\overrightarrow {AM} = \overrightarrow {MB} \). Do đó đáp án C đúng.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài 7. Khái niệm vectơ có đáp án !!

Số câu hỏi: 15

Copyright © 2021 HOCTAP247