Cho hình bình hành ABCD có một điểm O bất kì. Đẳng thức nào sau đây đúng?
A. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OC} - \overrightarrow {OD} \);
B. \(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {OC} - \overrightarrow {OD} \);
C. \(\overrightarrow {OA} - \overrightarrow {OD} = \overrightarrow {OC} - \overrightarrow {OB} \);
D. \(\overrightarrow {OA} - \overrightarrow {OC} = \overrightarrow {OD} - \overrightarrow {OB} \).
Đáp án đúng là B
+) Áp dụng quy tắc hiệu ta có: \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {BA} \) và \(\overrightarrow {OC} - \overrightarrow {OD} = \overrightarrow {DC} \):
\(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {AB} \) và \(\overrightarrow {OC} - \overrightarrow {OD} = \overrightarrow {DC} \);
Vì ABCD là hình bình hành nên AB = CD và AB // CD khi đó \(\overrightarrow {AB} = \overrightarrow {DC} \). Suy ra \(\overrightarrow {OA} - \overrightarrow {OB} \ne \overrightarrow {OC} - \overrightarrow {OD} \) và \(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {OC} - \overrightarrow {OD} \). Do đó B đúng, A sai.
+) Áp dụng quy tắc hiệu ta có: \(\overrightarrow {OA} - \overrightarrow {OD} = \overrightarrow {DA} \) và \(\overrightarrow {OC} - \overrightarrow {OB} = \overrightarrow {BC} \):
Vì ABCD là hình bình hành nên AD = CB và AD // CB khi đó \(\overrightarrow {DA} = \overrightarrow {CB} \). Suy ra \(\overrightarrow {OA} - \overrightarrow {OD} \ne \overrightarrow {OC} - \overrightarrow {OB} \). Do đó C sai.
+) Áp dụng quy tắc hiệu ta có: \(\overrightarrow {OA} - \overrightarrow {OC} = \overrightarrow {CA} \) và \(\overrightarrow {OD} - \overrightarrow {OB} = \overrightarrow {BD} \):
Vì hai vectơ \(\overrightarrow {CA} \) và \(\overrightarrow {BD} \) không cùng phương nên không bằng nhau. Suy ra\(\overrightarrow {OA} - \overrightarrow {OC} \ne \overrightarrow {OD} - \overrightarrow {OB} \). Do đó D sai.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247