Cho hình thoi ABCD có độ dài cạnh bằng 2 dm và \(\widehat {BAD} = 100^\circ \). Tính độ dài vectơ \(\overrightarrow {DA} + \overrightarrow {DC} \).
A. 9,39 dm;
B. 3,06 dm;
C. 7,31 dm;
D. 2,70 dm.
Đáp án đúng là B
Vì ABCD là hình thoi nên ABCD là hình bình hành khi đó: \(\overrightarrow {DA} + \overrightarrow {DC} = \overrightarrow {DB} \) (quy tắc hình bình hành)
Xét tam giác ABD có:
BD2 = AB2 + AD2 – 2.AB.AD.cos\(\widehat {BAD}\)
⇔ BD2 = 22 + 22 – 2.2.2.cos100°
⇔ BD2 = 22 + 22 – 2.2.2.cos100°
⇔ BD2 ≈ 9,39
⇔ BD ≈ 3,06 dm
⇒ \(\left| {\overrightarrow {DA} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right| = 3,06\,\,dm.\)
Vậy độ dài vectơ \(\overrightarrow {DA} + \overrightarrow {DC} \) là 3,06 dm.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247