Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường

Câu hỏi :

Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường tròn ngoại tiếp tam giác ABC.


A. 11,4;



B. 6,7;



C. 5,7;



D. 9.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là C

Ta có:

\(\overrightarrow {AB} = \left( {9; - 3} \right) \Rightarrow AB = \sqrt {{9^2} + {{\left( { - 3} \right)}^2}} = 3\sqrt {10} .\)

\(\overrightarrow {AC} \left( {9;6} \right) \Rightarrow AC = \sqrt {{9^2} + {6^2}} = 3\sqrt {13} .\)

\(\overrightarrow {BC} \left( {0;9} \right) \Rightarrow BC = \sqrt {{0^2} + {9^2}} = 9.\)

Ta lại có:

\(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.cos\widehat {BAC}\)

\( \Leftrightarrow 9.9 + \left( { - 3} \right).6 = 3\sqrt {10} .3\sqrt {13} .cos\widehat {BAC}\)

\( \Leftrightarrow 63 = 9\sqrt {130} .cos\widehat {BAC}\)

\( \Leftrightarrow cos\widehat {BAC} = \frac{7}{{\sqrt {130} }} \Leftrightarrow \widehat {BAC} \approx 52,13^\circ .\)

Áp dụng định lí Sin trong tam giác ta được:

\(\frac{{BC}}{{\sin \widehat {BAC}}} = 2R \Leftrightarrow \frac{9}{{\sin 52,13^\circ }} = 2R \Leftrightarrow R \approx 5,7\).

Copyright © 2021 HOCTAP247