Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1),

Câu hỏi :

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1), B(2;4), C(2;-2). Gọi H(x; y) là trực tâm của tam giác ABC. Tính S = 5x + y.


A. \(\frac{6}{5}\);



B. \(\frac{{26}}{5}\);



C. 2;



D. 6.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là C

Gọi trực tâm H của tam giác ABC có tọa độ là H(x;y)

Khi đó, ta có: \(\overrightarrow {AH} \left( {x + 3;y - 1} \right);\overrightarrow {BC} \left( {0; - 6} \right);\overrightarrow {BH} \left( {x - 2;y - 4} \right);\overrightarrow {AC} \left( {5; - 3} \right)\)

\(AH \bot BC \Rightarrow \overrightarrow {AH} .\overrightarrow {BC} = 0 \Leftrightarrow \left( {x + 3} \right).0 + \left( {y - 1} \right).\left( { - 6} \right) = 0 \Leftrightarrow y = 1.\)

\(BH \bot AC \Rightarrow \overrightarrow {BH} .\overrightarrow {AC} = 0 \Leftrightarrow \left( {x - 2} \right).5 + \left( {y - 4} \right).\left( { - 3} \right) = 0\)

\( \Leftrightarrow 5x - 10 - 3y + 12 = 0\)

\( \Leftrightarrow 5x - 3y = - 2\)

Mà y = 1 \( \Rightarrow 5x - 3.1 = - 2 \Leftrightarrow x = \frac{1}{5}.\)

Suy ra S = 5.\(\frac{1}{5}\) + 1 = 2.

Copyright © 2021 HOCTAP247