Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;1), B(3;3). Tìm điểm M(x;y) để OABM là một hình bình hành.
A. M(1; 2);
B. M(-1; 2);
C.M(1; -2);
D. M(-1; -2)
Đáp án đúng là A
Ta có hai vecto \(\overrightarrow {OA} \left( {2;1} \right),\overrightarrow {OB} \left( {3;3} \right)\) không cùng phương (vì \(\frac{2}{3} \ne \frac{1}{3}\)). Do đó các điểm O, A, B không cùng nằm trên một đường thẳng.
Suy ra các điểm O, A, B không thẳng hàng
Để OABM là hình bình hành khi và chỉ khi \(\overrightarrow {OA} = \overrightarrow {MB} \)
Ta có: \(\overrightarrow {OA} \left( {2;1} \right),\overrightarrow {MB} \left( {3 - x;3 - y} \right)\) nên
\(\left\{ \begin{array}{l}2 = 3 - x\\1 = 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right. \Rightarrow M\left( {1;2} \right).\)
Vậy điểm cần tìm là M(1;2).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247