Trong mặt phẳng tọa độ Oxy, cho các vecto u (2; 3x - 3) và vecto v (-1 -2)

Câu hỏi :

Trong mặt phẳng tọa độ Oxy, cho các vecto \(\overrightarrow u \left( {2;3x - 3} \right)\)\(\overrightarrow v \left( { - 1; - 2} \right)\). Có bao nhiêu giá trị nguyên của x thỏa mãn \(\left| {\overrightarrow u } \right| = \left| {2\overrightarrow v } \right|\).


A. 0;



B. 1;



C. 2;



D. 3.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là A

Độ dài của vectơ \(\overrightarrow u \)\(\left| {\overrightarrow u } \right| = \sqrt {{2^2} + {{\left( {3x - 3} \right)}^2}} = \sqrt {4 + {{\left( {3x - 3} \right)}^2}} \).

Độ dài của vectơ \(\overrightarrow v \)\(\left| {\overrightarrow v } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt 5 \).

Suy ra độ dài của vectơ 2\(\overrightarrow v \) là 2\(\left| {\overrightarrow v } \right| = 2.\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = 2\sqrt 5 \).

Để \(\left| {\overrightarrow u } \right|\) = 2\(\left| {\overrightarrow v } \right|\) thì\(\sqrt {4 + {{\left( {3x - 3} \right)}^2}} = 2\sqrt 5 \)

4 + (3x – 3)2 = 20

(3x – 3)2 = 16

\(\left[ \begin{array}{l}3x + 3 = 4\\3x + 3 = - 4\end{array} \right.\)

\(\left[ \begin{array}{l}3x = 1\\3x = - 7\end{array} \right.\)

\(\left[ \begin{array}{l}x = \frac{1}{3}\\x = - \frac{7}{3}\end{array} \right.\)

Ta thấy các giá trị \(\frac{1}{3}\) hay \( - \frac{7}{3}\) đều không là các giá trị nguyên. Do đó không tồn tại giá trị nguyên nào của x thỏa mãn điều kiện đầu bài.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài tập cuối chương 4 có đáp án !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247