Số giá trị nguyên của x thỏa mãn điều kiện xác định của phương trình :\(\sqrt {2 - x} + \frac{4}{{\sqrt {x + 1} + 3}} = 1\) là:
A. 0;
B. 1;
C. 2;
D. 3.
Đáp án đúng là: B
Điều kiện của phương trình : \(\left\{ \begin{array}{l}2 - x \ge 0\\x + 1 > 0\\\sqrt {x + 1} + 3 \ne 0\end{array} \right. \Leftrightarrow - 1 < x \le 2\).
Vì x ∈ ℤ nên x ∈ {0; 1; 2}.
Vậy có 3 giá trị nguyên của x thỏa mãn điều kiện xác định của phương trình đã cho.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247