Xét vị trí tương đối của hai đường thẳng: d1: 3x - 2y - 6 = 0

Câu hỏi :

Xét vị trí tương đối của hai đường thẳng:

\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0


A.   Trùng nhau.                      



B. Song song.



C. Vuông góc với nhau.            



D. Cắt nhau nhưng không vuông góc nhau.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Ta có: \[\left\{ \begin{array}{l}{d_1}:3x - 2y - 6 = 0\\{d_2}:6x - 2y - 8 = 0\end{array} \right.\]

Giải hệ phương trình: \[\left\{ \begin{array}{l}3x - 2y - 6 = 0\\6x - 2y - 8 = 0\end{array} \right.\] \[ \Leftrightarrow \]\[ \Leftrightarrow \left\{ \begin{array}{l}3x - 2y = 6\\3x = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x = \frac{2}{3}\\y = - 2\end{array} \right.\]

Suy ra hai đường thẳng cắt nhau tại 1 điểm.

Ta lại có: d1 có VTPT \(\overrightarrow {{n_1}} \) = (3; -2) và d2 có VTPT \(\overrightarrow {{n_2}} \)= (6; -2).

\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} \) = 3.6 + (-3).(-2) = 18 + 6 = 24 ≠ 0. Do đó d1 và d2 không vuông góc.

Vậy hai đường thẳng cắt nhau nhưng không vuông góc.

Copyright © 2021 HOCTAP247