Cho tam giác ABC đều, ABC có độ dài cạnh bằng 1. Dựng ra phía ngoài tam giác

Câu hỏi :

Cho tam giác ABC đều, ABC có độ dài cạnh bằng 1. Dựng ra phía ngoài tam giác các hình vuông ABDE, BCMN, CAHK. Diện tích lục giác DEHKMN bằng:

A. 12+334;

B. 92

C. 3+3;

D. 6+332.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: C

Cho tam giác ABC đều, ABC có độ dài cạnh bằng 1. Dựng ra phía ngoài tam giác (ảnh 1)

- Tam giác ABC là tam giác đều nên BAC^=60° 

Diện tích tam giác ABC là:

SABC=12.AB.AC.sinBAC^=12.1.1.sin60°=34 (đơn vị diện tích).

- Hình vuông ABDE có cạnh AB = 1 nên có diện tích là: SABDE = 12 = 1 (đơn vị diện tích).

Tương tự SBCMN = 1 (đơn vị diện tích) và SCAHK = 1 (đơn vị diện tích).

- Tam giác AEH có:

EAH^=360°EAB^BAC^CAF^=360°90°60°90°=120°. 

Diện tích tam giác AEH là:

SAEH=12.AE.AH.sinEAH^=12.1.1.sin120°=34 (đơn vị diện tích).

Tương tự ta có: SBDN=34 (đơn vị diện tích) và SCKM=34 (đơn vị diện tích)

Do đó diện tích của lục giác DEHKMN là:

SDEHKMN = SABC + 3.SABDE + 3.SAEH

SDEHKMN=34+3.1+3.34=3+3 (đơn vị diện tích).

Vậy SDEHKMN=3+3 (đơn vị diện tích).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài tập cuối chương 4 có đáp án !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247