Cho tam giác ABC nội tiếp đường tròn bán kính R, AB = R, AC=R căn bậc hai 2

Câu hỏi :

Cho tam giác ABC nội tiếp đường tròn bán kính R, AB = R, AC=R2. Tính số đo của A^ biết A^ là góc tù.

A. 105°;

B. 120°;

C. 135°;

D. 150°.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: A

Trong tam giác ABC có A là góc tù nên B^,C^ là góc nhọn.

Áp dụng định lí sin trong tam giác ABC ta có: ACsinB=ABsinC=2R

R2sinB=RsinC=2R 

sinB=R22R=22sinC=R2R=12 B^=45°C^=30° (vì B^,C^ là góc nhọn)

Xét tam giác ABC có B^=45°,C^=30° ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

A^=180°B^C^ 

A^=180°45°35°=105°

Vậy A^=105°. 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài tập cuối chương 4 có đáp án !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247