A. \(\overrightarrow {AB} = \overrightarrow {CD} ;\)
B. \[\overrightarrow {BD} = \overrightarrow {AC} ;\]
C. \(\left| {\overrightarrow {BD} } \right| = 1;\)
D. \(\left| {\overrightarrow {{\rm{AC}}} } \right| = 1.\)
Đáp án đúng là: D
• Xét phương án A:
Vì ABCD là hình thoi nên AB // CD suy ra \(\overrightarrow {AB} = \overrightarrow {DC} .\)
Do đó phương án A là sai.
• Xét phương án B:
Vì ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau.
Khi đó \(\overrightarrow {BD} \bot \overrightarrow {AC} \) nên \[\overrightarrow {BD} \ne \overrightarrow {AC} .\]
Do đó phương án B là sai.
• Xét phương án C:
Vì ABCD là hình thoi có cạnh bằng 1 nên AD = AB = 1.
Xét ABD có AB = AD = 1 và \(\widehat {DAB} = 120^\circ ,\) áp dụng định lí cosin ta có:
BD2 = AD2 + AB2 – 2.AD.AB.cos\(\widehat {DAB}\)
BD2 = 12 + 12 – 2.1.1.cos120°
BD2 = 3
BD = \(\sqrt 3 \)
Khi đó \(\left| {\overrightarrow {BD} } \right| = BD = \sqrt 3 .\)
Do đó phương án C là sai.
• Xét phương án D:
Vì ABCD là hình thoi có cạnh bằng 1 nên AD = CD = 1 .
Mặt khác \(\widehat {DAB} = 120^\circ \) nên \(\widehat {ADC} = 180^\circ - \widehat {DAB} = 180^\circ - 120^\circ = 60^\circ \)
Tam giác ADC có AD = DC nên là tam giác cân lại có \(\widehat {ADC} = 60^\circ \)
Suy ra ADC là tam giác đều
AC = AD = CD = 1.
Khi đó \(\left| {\overrightarrow {AC} } \right| = AC = 1.\)
Do đó phương án D là đúng.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247