\(\frac{a}{{1 + {a^2}}} = \frac{{9a}}{{8 + 1 + 9{a^2}}} \le \frac{{9a}}{{8 + 6a}} = \frac{3}{2}\left( {1 - \frac{4}{{3a + 4}}} \right)\)
Tương tự \(\frac{b}{{1 + {b^2}}} \le \frac{3}{2}\left( {1 - \frac{4}{{3b + 4}}} \right)\)
\(\frac{c}{{1 + {c^2}}} \le \frac{3}{2}\left( {1 - \frac{4}{{3c + 4}}} \right)\\)
\(\begin{array}{l}
A \le \frac{3}{2}\left[ {3 - 4\left( {\frac{1}{{3a + 4}} + \frac{1}{{3b + 4}} + \frac{1}{{3c + 4}}} \right)} \right]\\
A \le \frac{3}{2}\left[ {3 - 4.\frac{9}{{\left( {3a + 4} \right) + \left( {3b + 4} \right) + \left( {3c + 4} \right)}}} \right] = \frac{9}{{10}}
\end{array}\)
Max \(A = \frac{9}{{10}}\) \( \Leftrightarrow a = b = c = \frac{1}{3}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247