Lời giải
Đặt \[\frac{{{\rm{AA}}'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}} = t\] (t > 0)
⇔ \[\left\{ \begin{array}{l}AA' = tAB\\BB' = tBC\\CC' = tCA\end{array} \right.\]
⇒ \[\left\{ \begin{array}{l}\overrightarrow {AA'} = t\overrightarrow {AB} \\\overrightarrow {BB'} = t\overrightarrow {BC} \\\overrightarrow {CC'} = t\overrightarrow {CA} \end{array} \right.\] (vì các điểm A’, B’, C’ lần lượt thuộc các cạnh AB, BC, CA)
Gọi G là trọng tâm tam giác ABC nên \[\overrightarrow {{\rm{GA}}} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \]
Ta có: \[\overrightarrow {{\rm{AA}}'} + \overrightarrow {BB'} + \overrightarrow {CC'} = t\left( {\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} } \right)\]
⇔ \[\overrightarrow {{\rm{AG}}} + \overrightarrow {{\rm{GA}}'} + \overrightarrow {BG} + \overrightarrow {GB'} + \overrightarrow {CG} + \overrightarrow {GC'} = t\left( {\overrightarrow {AC} + \overrightarrow {CA} } \right)\]
⇔ \[\left( {\overrightarrow {{\rm{AG}}} + \overrightarrow {BG} + \overrightarrow {CG} } \right) + \left( {\overrightarrow {{\rm{GA}}'} + \overrightarrow {GB'} + \overrightarrow {GC'} } \right) = t.\overrightarrow {AA} \]
⇔ \[ - \left( {\overrightarrow {{\rm{GA}}} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + \left( {\overrightarrow {{\rm{GA}}'} + \overrightarrow {GB'} + \overrightarrow {GC'} } \right) = t.\overrightarrow 0 \]
⇔ \[\overrightarrow {{\rm{GA}}'} + \overrightarrow {GB'} + \overrightarrow {GC'} = \overrightarrow 0 \]
Suy ra G cũng là trọng tâm của tam giác A’B’C’.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247