Cho hàm số f(x) = 4/x + 1. Khẳng định nào sau đây là đúng ? A. f(x) đồng biến trên khoảng (–∞; –1) và nghịch biến trên khoảng (–1; +∞); B. f(x) đồng biến trên các khoảng (–∞; –1) v...

Câu hỏi :

Cho hàm số \(f(x) = \frac{4}{{x + 1}}\). Khẳng định nào sau đây là đúng ?

A. f(x) đồng biến trên khoảng (–∞; –1) và nghịch biến trên khoảng (–1; +∞);

B. f(x) đồng biến trên các khoảng (–∞; –1) và (–1; +∞);

C. f(x) nghịch biến trên khoảng (–∞; –1) và đồng biến trên khoảng (–1; +∞);

D. f(x) nghịch biến trên các khoảng (–∞; –1) và (–1; +∞).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải:

Đáp án đúng là: D.

Xét hàm số y = x có tập xác định D = ℝ\{–1}.

+) Cho x1, x2 tùy ý thuộc (–∞; –1) sao cho x1 > x2 ta có:

\(f({x_1}) - f({x_2}) = \frac{4}{{{x_1} + 1}} - \frac{4}{{{x_2} + 1}}\)

\( = \frac{{4({x_2} + 1) - 4({x_1} + 1)}}{{({x_1} + 1)({x_2} + 1)}}\)

\( = \frac{{4{x_2} - 4{x_1}}}{{({x_1} + 1)({x_2} + 1)}}\)

\( = \frac{{4({x_2} - {x_1})}}{{({x_1} + 1)({x_2} + 1)}}\)

Ta có: Khi x1, x2 tùy ý thuộc (–∞; –1) thì x1 + 1 < 0, x2 + 1 < 0

Mà x1 > x2 nên x2 – x1  < 0

Do đó, f(x) – f(x2) < 0 hay f(x) < f(x2).

Vậy hàm số \(f(x) = \frac{4}{{x + 1}}\) nghịch biến trên khoảng (–∞; –1).

+) Cho x1, x2 tùy ý thuộc (–1; +∞) sao cho x1 > x2 ta có:

\(f({x_1}) - f({x_2}) = \frac{4}{{{x_1} + 1}} - \frac{4}{{{x_2} + 1}}\)

\( = \frac{{4({x_2} + 1) - 4({x_1} + 1)}}{{({x_1} + 1)({x_2} + 1)}}\)

\( = \frac{{4{x_2} - 4{x_1}}}{{({x_1} + 1)({x_2} + 1)}}\)

\( = \frac{{4({x_2} - {x_1})}}{{({x_1} + 1)({x_2} + 1)}}\)

Ta có: Khi x1, x2 tùy ý thuộc (–1; +∞) thì x1 + 1 > 0, x2 + 1 > 0

Mà x1 > x2 nên x2 – x1  < 0

Do đó, f(x) – f(x2) < 0 hay f(x) < f(x2).

Vậy hàm số \(f(x) = \frac{4}{{x + 1}}\) nghịch biến trên khoảng (–1; +∞).

Copyright © 2021 HOCTAP247