Một người chơi cầu lông có khuynh hướng phát cầu với góc 30° (so với mặt đất). Hãy tính khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa), biết cầu rời mặt v...

Câu hỏi :

Một người chơi cầu lông có khuynh hướng phát cầu với góc 30° (so với mặt đất). Hãy tính khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa), biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc ban đầu của cầu là 8 m/s (bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải:

Chọn hệ trục tọa độ Oxy.

Với g = 9,8 m/s2, góc phát cầu α = 30°, vận tốc ban đầu v0 = 8 m/s, phương trình quỹ đạo của cầu là:

\(y = - \frac{{9,8{x^2}}}{{{{2.8}^2}.co{s^2}({{30}^o})}} + \tan ({30^o}).x + 0,7 = \frac{{ - 4,9}}{{48}}{x^2} + \frac{{\sqrt 3 }}{3}x + 0,7\)

Vị trí cầu rơi chạm đất là giao điểm của parabol và trục hoành nên giải phương trình

\(\frac{{ - 4,9}}{{48}}{x^2} + \frac{{\sqrt 3 }}{3}x + 0,7 = 0\) ta được x1 ≈ –1,03 và x2 ≈ 6,68

Giá trị nghiệm dương cho ta khoảng cách từ vị trí người chơi cầu lông đến vị trí cầu rơi chạm đất khoảng 6,68 m.

Copyright © 2021 HOCTAP247