Cho tam giác ABC có BC = a, AC = b, AB = c. Mệnh đề nào sau đây đúng?
A. Nếu b2 + c2 – a2 > 0 thì góc A nhọn;
B. Nếu b2 + c2 – a2 > 0 thì góc A tù;
C. Nếu b2 + c2 – a2 < 0 thì góc A nhọn;
D. Nếu b2 + c2 – a2 < 0 thì góc A vuông.
Lời giải
Đáp án đúng là A
Theo định lí côsin ta có: a2 = b2 + c2 – 2bccosA
Nếu b2 + c2 – a2 > 0 hay b2 + c2 > a2 thì 2bccosA > 0 hay cosA > 0 ( b,c là cạnh tam giác nên b,c > 0 ). Khi đó \(\widehat {\rm{A}}\) < 90° hay góc A nhọn.
Nếu b2 + c2 – a2 < 0 hay b2 + c2 < a2 thì 2bccosA < 0 hay cosA < 0 ( b,c là cạnh tam giác nên b,c > 0 ). Khi đó \(\widehat {\rm{A}}\) > 90° hay góc A tù.
Như vậy đáp án đúng là A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247